ANAMAR News

Stay up to date with our latest news.

The HMS Challenger; One of the Earliest Scientific Expeditions That Changed the Course of Scientific History

 

HMS Challenger Anatomy of a penguin

"Anatomy of Penguins" The Voyage of HMS Challenger

Photo Credit: Wikimedia Commons

The HMS Challenger set sail on December 21, 1872, from Portsmouth, England, containing an impressive crew of physicists, chemists, biologists, artists, and expert navigators, all of which shared the common goal of circumnavigating the globe while studying the flora and fauna that live within our oceans. On its 68,890-nautical-mile-voyage, the Challenger obtained 492 deep-sea soundings, 133 bottom samples, 151 open-water trawls, and 263 serial water temperature readings. It is estimated that on this voyage nearly 4,700 new species of marine life were discovered. Among some of the instruments used during this voyage were a shallow-water dredge, a deep-sea trawl (that had no closing device), specimen jars containing alcohol for preservation, thermometers and water sampling devices such as the Buchanan water sampler, 144 miles of Italian hemp rope, and 12.5 miles of piano wire for sampling gear, as well as many microscopes and instruments for the on-board laboratories. The ship contained a natural history laboratory where specimens were examined, identified, dissected, and drawn, and a chemistry laboratory containing a (then) state-of-the-art boiling device called a carbonic acid analysis apparatus, used for analyzing carbonic acid contained in samples.

References:

  1. Oceanography: An Introduction to the Marine Environment (Peter K. Weyl, 1970)
  2. Rice, A.L. (1999). "The Challenger Expedition". Understanding the Oceans: Marine Science in the Wake of HMS Challenger. Routledge. pp. 27–48
  3. http://en.wikipedia.org/wiki/Challenger_expedition

 

Continue reading
76 Hits
0 Comments

ANAMAR Biologist, Jason Seitz’s Publication on Taxonomic Resolution of Sawfish Rosta Published in Endangered Species Research (ESR)

 

sawfish FILEminimizer

A synopsis of Jason Seitz and Jan Jeffrey Hoover’s evaluations of two large private collections of sawfish rosta (saws) has been published in the latest issue of ESR, an online-only international and multidisciplinary open-access journal on endangered species research.

Click here to read the article.

Continue reading
241 Hits
0 Comments

Florida’s Introduced Nonindigenous and Invasive Mollusks (Clams and Snails): Final Installment of Our 3-part Series on Biological Invasions in Florida

 

This article is a repost from 2015, it discusses the species of introduced mollusks (bivalves and gastropods, better known as clams and snails) of Florida’s terrestrial and aquatic habitats along with a general discussion of the possible effects of biological invasions on native wildlife and habitats.  The first part of this three-part series was on introduced fishes in the state, and the second was on introduced amphibians and reptiles.  This discussion on introduced mollusks of Florida will wrap up our series!

As of this writing, at least 31 species of nonindigenous mollusks representing 17 families have been introduced to Florida (Exhibit 3).  Of these, about 68% have established breeding populations in one or more counties.  There are at least 5 species of introduced clams and 26 species of introduced snails, including terrestrial, freshwater, and marine species.  Of these mollusks, about 68% have established breeding populations in one or more counties.  Examples of established invasive species include the Asian green mussel (Perna viridis) (Exhibit 1) and the giant East African snail (Achatina fulica) (Exhibit 2).  

Exhibit 1 of JCS Introduced Mollusks Writeup 040115

 

Some well-known negative effects of introduced snails are large-scale consumption and decimation of native vegetation and out-competing native species through direct competition for limited resources and through predation on their eggs and young. 

The giant East African snail (Achatina fulica) (Exhibit 2) is a member of a family that contains the largest land snails in the world (Abbott 1989).  The species was first introduced to Florida in 1966 when a young boy brought three live snails from Hawaii (where it is also introduced) to Miami as pets.  Upon discovery of the smuggled snails, the boy’s grandmother released the snails into her garden.  Over the next several years the snails multiplied and spread to neighboring lands.  Florida state agricultural authorities were eventually alerted to the establishment of this destructive species and the species was eradicated by 1972 to the tune of $300,000 (Abbott 1989) to more than $1 million (FDACS 2011).  Between 1966 and 1972, the three specimens brought to Florida by the boy had multiplied to over 18,000 snails.  One specimen of the Miami colony reportedly measured a whopping seven inches in shell length (Abbott 1989)!  

Exhibit 2 of JCS Introduced Mollusks Writeup 040115

 

In September 2011, the giant East African snail was found to have been reestablished in Miami after the Florida Department of Agriculture and Consumer Services responded to a call from a Miami homeowner.  Within 6 months, over 40,000 snails were collected in Miami by state and federal authorities (USDA 2012).  Although authorities are working hard to remove all the individuals of this species from Florida, the eradication will prove very difficult and the likelihood of complete eradication currently appears low.

The giant East African snail is introduced and invasive in several other parts of the world, including Hawaii and other islands in the Pacific, the Philippines, Madagascar, and parts of Asia.  The species is known to consume some 500 species of plants in both agricultural and natural areas.  Because the snail requires large amounts of calcium to grow and strengthen its great shell, the species causes damage to plaster and stucco while consuming these products for their calcium content.  It is a known carrier of a parasitic nematode that is capable of spreading meningitis in humans (FDACS 2011). 

The parasitic nematode known as rat lungworm (Angiostrongylus cantonensis) is carried by the giant East African snail and has an interesting life cycle.  The larvae are ingested by the snail (the intermediate host of the worm) when feeding on rat feces (don’t ask).  The larvae grow and approach maturity inside the snail.  It takes the consumption of an infected snail by a rat (the definitive host) for the parasitic nematode to complete its life cycle by reaching maturity and producing eggs inside the rat.  The mature nematode eggs hatch into larvae while still within the rat and are expelled with the rat’s feces.  People can become infected by eating undercooked or raw (who eats raw snails?) infected snails.  People may also become infected by eating raw produce such as lettuce that contains a small snail or slug.  An infected person cannot transmit the disease to other people.  Infection of rat lungworm in humans is rare in the continental United States, but at least one case was recorded in 1993 in New Orleans where a boy ingested a raw snail (apparently on a dare) and became infected with rat lungworm.  The parasitic nematode is host-specific and humans are not its intended host, so the parasite typically dies inside an infected person, even without treatment.  However, the symptoms range from headache, muscle aches, stiff neck, skin irritation, fever, nausea, and vomiting until the parasite dies (CDC 2010).  

 

In 2012, a captive orangutan (Pongo sp.) housed in Miami was found to have been infected with the rat lungworm.  The animal had a history of eating snails.  Researchers from the University of Florida collected snails and rat feces from around the area where the orangutan was housed and examined the samples for evidence of the parasitic nematode.  Several of the snails and all of the rat feces tested positive for rat lungworm (UF 2015).  The species of snails found to have been infected included the introduced species Asian trampsnail (Bradybaena similaris), garden zachrysia (Zachrysia provisoria), and the striate drop (Alcadia striata) (J. Slapcinsky, Florida Museum of Natural History, Gainesville, FL, pers. comm. 03/03/015).

Although reducing the effects of invasive nonindigenous species (such as those listed in Exhibit 3) is an important part of restoration and management efforts in natural areas of Florida and elsewhere, introduced mollusks are typically a lower priority than other organisms, such as invasive plants or fishes, except when they are known carriers of disease or damage agricultural crops or other property.  Nonetheless, invasive organisms of all kinds can cause significant stress to native ecosystems and biological invasion is widely viewed as a major cause of the reduction in native plant and animal diversity (Elton 1958, Wilcove et al. 1998).  Invasive species are known to affect most natural areas of the United States (Villazon 2009) and worldwide (Sala et al. 2000).

It should go without saying that the intentional introduction of any nonindigenous species, whether it be a plant or animal and regardless of size or assumed innocuousness, should never be attempted.  The reasons are many and the costs can be severe in terms of biological effects, human health, and economic impacts.  Nonindigenous species introduced to new areas have the capacity to explode in numbers and outcompete native species for limited resources such as food, water, and shelter.  Native species are at a competitive disadvantage because they have not had time to evolve defense mechanisms that would otherwise allow them to successfully compete against the introduced species.  The introduced species can have a competitive edge where it is introduced outside its native range partly because these species lack the predators they would have in their native range.  This idea was coined fairly recently by scientists with the term ‘predator release’.  The competition between native and nonindigenous species can result in the extinction of native species, spread of diseases and parasites, and displacement of whole communities, and may even cause physical changes to the environment.

 

 Jasons 1Jasons 2Jasons 3Jasons 4

jasons 5

 

Sources:

Abbott, R.T.  1989. Compendium of Landsnails.  A Color Guide to More than 2,000 of the World’s Terrestrial Shells.  American Malacologists, Inc., Melbourne, FL.

Centers for Disease Control (CDC).  2010.  Parasites – Angiostrongyliasis (Also Known as Angiostrongylus Infection) [online resource].  Accessed 03/24/15 at http://www.cdc.gov/parasites/angiostrongylus/‌gen_info/faqs.html#whatangiostrongylus#whatangiostrongylus.

Elton, C.S.  1958.  The Ecology of Invasions by Animals and Plants. Methuen and Co., Ltd., Strand, London.

Florida Department of Agriculture and Consumer Services (FDACS).  2011.  Florida Department of Agriculture and Consumer Services Identified Giant African Land Snails in Miami-Dade County [online resource].  Accessed 03/24/15 at http://www.freshfromflorida.com/News-Events/Press-Releases/2011-Press-Releases/Florida-Department-of-Agriculture-and-Consumer-Services-Identifies-Giant-African-Land-Snails-in-Miami-Dade-County.

Florida Museum of Natural History (FLMNH).  2015.  Invertebrate Zoology Master Database [online resource].  Accessed 03/23/15 at http://www.flmnh.ufl.edu/scripts/dbs/malacol_pub.asp.

 Sala, O.E. F.S. Chapin, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker, and D.H. Wall.  2000.  Global biodiversity scenarios for the year 2100. Science 287:1770–1774.

Seitz, J.C.  2014.  Assessing Stream-mediated Seed and Shoot Dispersal of Invasive Plants in an Urban Riparian Wetland [thesis].  University of Florida, Gainesville, FL.

University of Florida (UF).  2015.  UF Researchers: Rare Parasite Colonizing Snails in South Florida [online resource].  Accessed 03/24/15 at http://news.ufl.edu/archive/2015/02/uf-researchers-rare-parasite-colonizing-snails-in-south-florida.html#prettyPhoto.

U.S. Department of Agriculture (USDA).  2012.  Escargot? More like Escar-No! [online resource].  Accessed 03/24/15 at http://blogs.usda.gov/2012/04/19/escargot-more-like-escar-no/.

U.S. Geological Survey (USGS).  2015.  NAS – Nonindigenous Aquatic Species [online resource].  Accessed 03/23/15 at http://nas.er.usgs.gov/queries/SpeciesList.aspx?Group=Mollusks&Sortby=1&state=FL.

Villazon, K.A.  2009.  Methods to Restore Native Plant Communities after Invasive Species Removal: Marl Prairie Ponds and an Abandoned Phosphate Mine in Florida.  MS thesis, University of Florida, Gainesville, FL.

Wilcove, D.S., D. Rothstein, J. Dubow, A. Phillips, and E. Losos.  1998.  Quantifying threats to imperiled species in the United States. Bioscience 48:607–615.

Wilson, L.D. and L. Porras.  1983.  The Ecological Impact of Man on the South Florida Herpetofauna.  The University of Kansas Museum of Natural History Special Publication No. 9, University of Kansas, Lawrence, KS.

 

 

 

 

Continue reading
290 Hits
0 Comments

Florida’s Introduced Nonindigenous and Invasive Fishes: Part 1 of a 3-part Series on Biological Invasions in Florida

This article is a repost from 2015. It discusses the species of introduced fishes in Florida’s freshwater and marine habitats, along with a general discussion of biological invasions as a potential driver of loss-of-habitat functions.  Future articles in the series will discuss introduced mollusks (bivalves and gastropods) and herptiles (amphibians and reptiles) of Florida.

Waterbodies such as streams, lakes, ponds, and oceans are well known for their habitat functions, especially their ability to support aquatic wildlife by providing sustenance and shelter.  A myriad of animals, from tiny arthropods to 12-meter-long whale sharks, rely on native organisms as food.   Many waterbodies support some of the most productive habitats in the world, providing food and shelter for mollusks, crustaceans, fishes, amphibians, reptiles, birds, and mammals, and often serve as vital nursery grounds for these species.  Others are nutrient-poor and relatively unproductive.  Nevertheless, hundreds of imperiled species require aquatic habitats for survival.  Along with their threatened or endangered wildlife, waterbodies themselves are threatened in many ways.  Anthropogenic disturbances include groundwater depletion, reallocation of surface water, nutrient inputs, habitat fragmentation, fire suppression, pollution, land use changes, overharvesting, climate change, dredging, and the introduction of nonindigenous plants and animals (Exhibit 1).

Exhibit 1 of JCS Introduced Fishes Writeup 012815

Reducing the effects of invasive nonindigenous species is an important part of restoration and management efforts in natural areas of Florida, the United States, and worldwide.  These species cause significant stress to native ecosystems (Adams and Steigerwalt 2010), and biological invasion is widely viewed as a major cause of the reduction in native plant and animal diversity (Elton 1958, Wilcove et al. 1998).  Invasive species are known to affect most natural areas of the United States (Villazon 2009) and worldwide (Sala et al. 2000), and aquatic habitats are particularly susceptible to nonindigenous species due in part to the fact that aquatic habitats act as biological sinks, receiving plant and animal genetic material from upstream sources.

As of this writing, at least 192 species of fishes representing 42 families have been introduced to Florida (Exhibit 2).  Nearly all waterbodies are affected by fish introductions, from small wetlands to the Atlantic and Gulf coasts of Florida.  The list below contains the species known to have been introduced, although it is important to note that new species are introduced on a regular basis in Florida, so the list is constantly expanding.  Many species ultimately fail to gain a foothold in Florida, while a smaller number of species successfully establish themselves.  Some have spread like a cancer across the state.  The Brown Hoplo (Hoplosternum littorale) is an example of an introduction that is now established throughout the peninsula of Florida, much to the detriment of native aquatic species that have not had time to adapt to this new competitor for limited resources.  Marine habitats are not immune to biological invasions.  The detrimental effects of the (likely intentional) introduction of two species of invasive lionfishes (Red Lionfish and Devil Firefish [Pterois volitans and P. miles]) are still being determined but likely include direct predation on native fishes, crabs, and shrimps and competition with native reef species for limited resources.  Red Lionfish and Devil Firefish are now firmly established throughout the Atlantic coast of Florida and are actively invading much of the Gulf of Mexico.  The spread of lionfishes throughout the western North Atlantic Ocean is occurring at an unprecedented rate (see Exhibit 3) (Schofield 2010).  Many of the introduced fishes in Florida are from tropical or subtropical areas of Asia and South America, and to a lesser extent, Africa (Idelberger et al. 2010).  The fact that Florida’s climate is also subtropical is a major reason why many introduced species have successfully established themselves in the state. 

It should go without saying that the intentional introduction of any nonindigenous species, whether it be a plant or animal and regardless of size or assumed innocuousness, should never be attempted.  The reasons are many and the costs can be severe, both in terms of biological effects and economic impacts.  Nonindigenous species introduced to new areas have the capacity to explode in numbers and outcompete native species for limited resources such as food, water, and shelter.  Native species are at a competitive disadvantage because they have not had time to evolve defense mechanisms that would otherwise allow them to successfully compete against the introduced species.  The competition between native and nonindigenous species can result in the extinction of native species, the spread of diseases and parasites, and the displacement of whole communities, and may even cause physical changes to the environment. 

Exhibit 2.  Freshwater and marine nonindigenous fishes recorded from Florida.

Scientific Name

Common Name

Locality Records

Current Status

ACANTHURIDAE

SURGEONFISHES

 

 

Acanthurus guttatus

Whitespotted Surgeonfish

Atlantic Ocean off Palm Beach County

Unknown, not likely to be established

Acanthurus pyroferus

Chocolate Surgeonfish

Atlantic Ocean off Palm Beach County

Unknown, not likely to be established

Acanthurus sohal

Red Sea Surgeonfish

Atlantic Ocean off Broward County

Unknown, not likely to be established

Naso lituratus

Orangespine Unicornfish

Atlantic Ocean off Palm Beach County

Unknown, not likely to be established

Zebrasoma desjardinii

Sailfin Tang

Atlantic Ocean off Broward County

Unknown, not likely to be established

Zebrasoma flavescens

Yellow Tang

Atlantic Ocean off Broward, Monroe, & Palm Beach counties

Established off Monroe County, unknown elsewhere

Zebrasoma scopas

Brown Tang

Atlantic Ocean off Broward County

Unknown, not likely to be established

Zebrasoma veliferum

Sailfin Tang

Atlantic Ocean off Monroe & Palm Beach counties

Unknown

Zebrasoma xanthurum

Yellowtail Tang

Atlantic Ocean off Palm Beach County

Unknown

ANABANTIDAE

CLIMBING GOURAMIES

 

 

Anabas testudineus

Climbing Perch

Manatee County

Extirpated

Ctenopoma nigropannosum

Twospot Climbing Perch

Manatee County

Extirpated

ANOSTOMIDAE

HEADSTANDERS

 

 

Leporinus fasciatus

Banded Leporinus

Miami-Dade County

Failed

BALISTIDAE

TRIGGERFISHES

   

Balistoides conspicillum

Clown Triggerfish

Atlantic Ocean off Palm Beach County

Unknown, not likely to be established

Rhinecanthus aculeatus

Lagoon Triggerfish

Atlantic Ocean off Palm Beach County

Unknown, not likely to be established

Rhinecanthus verrucosus

Bursa Triggerfish

Atlantic Ocean off Palm Beach County

Unknown, not likely to be established

BLENNIIDAE

BLENNIES

 

 

Hypsoblennius invemar

Tessellated Blenny

Atlantic and Gulf coasts off Bay, Broward, Lee, Miami-Dade, Monroe, & Palm Beach counties

Established

CALLICHTHYIDAE

ARMORED CATFISHES

 

 

Callichthys callichthys

Cascarudo

Palm Beach County, Boca Raton

Failed

Corydoras sp.

Corydoras

Miami-Dade County, elsewhere

Failed

Hoplosternum littorale

Brown Hoplo

Most of peninsular Florida

Established

CENTRARCHIDAE

SUNFISHES

 

 

Ambloplites rupestris

Rock Bass

Jackson, Okaloosa, Santa Rosa, & Walton counties

Established

CHAETODONTIDAE

BUTTERFLYFISHES

 

 

Chaetodon lunula

Raccoon Butterflyfish

Atlantic Ocean off Broward & Palm Beach counties

Unknown

Heniochus diphreutes

Schooling Bannerfish

Atlantic Ocean off Broward County

Unknown, not likely to be established

Heniochus intermedius

Red Sea Bannerfish

Atlantic Ocean off Palm Beach County

Unknown, not likely to be established

Heniochus sp.

Bannerfish

Atlantic Ocean off Palm Beach County

Unknown

CHANNIDAE

SNAKEHEADS

 

 

Channa argus

Northern Snakehead

Seminole & Volusia counties

Failed

Channa marulius

Bullseye Snakehead

Broward County

Established

CHARACIDAE

TETRAS

 

 

Aphyocharax anisitsi

Bloodfin Tetra

Hillsborough County

Failed

Colossoma macropomum

Tambaqui

Alachua, Bay, Broward, Leon, Pinellas, St. Lucie & Volusia counties

Failed

Colossoma or Piaractus sp.

Unidentified Pacu

Alachua, Broward, Citrus, DeSoto, Duval, Escambia, Holmes, Indian River, Marion, Miami-Dade, Pinellas, & Volusia counties

Failed

Gymnocorymbus ternetzi

Black Tetra

Hillsborough County

Failed

Hyphessobrycon eques

Serpae Tetra

Bay County

Failed

Metynnis sp.

Metynnis

Collier & Martin counties, elsewhere

Established (Martin Co.)

Failed (Collier Co.)

Moenkhausia sanctaefilomenae

Redeye Tetra

Hillsborough County

Failed

Piaractus brachypomus

Pirapatinga, Red-Bellied Pacu

Alachua, Brevard, DeSoto, Hillsborough, Martin, Monroe, Orange, Osceola, Polk, Sarasota, St. Lucie, & Walton counties

Unknown (Monroe Co.)

Failed (all other counties)

Piaractus mesopotamicus

Small-Scaled Pacu

Lee County

Failed

Pygocentrus nattereri

Red Piranha

Miami-Dade & Palm Beach counties

Failed (Miami-Dade Co.)

Eradicated (Palm-Beach Co.)

Pygocentrus or Serrasalmus sp.

Unidentified Piranha

Florida (not specified)

Collected

Serrasalmus rhombeus

White Piranha

Alachua & Miami-Dade counties, elsewhere

Eradicated to failed

CICHLIDAE

CICHLIDS

 

 

Aequidens pulcher

Blue Acara

Hillsborough County

Extirpated

Amphilophus citrinellus

Midas Cichlid

Alachua, Broward, Hillsborough, & Miami-Dade counties

Failed (Alachua Co.)

Established (elsewhere)

Archocentrus nigrofasciatus

Convict Cichlid

Alachua & Miami-Dade counties, elsewhere

Failed or eradicated throughout

Astatotilapia calliptera

Eastern Happy

Broward & Palm Beach counties

Established (both counties)

Astronotus ocellatus

Oscar

Much of southern FL

Established

Cichla ocellaris

Butterfly Peacock Bass

Much of southern FL

Established

Cichla temensis

Speckled Pavon

Palm Beach County, elsewhere in southern FL

Failed

Cichlasoma bimaculatum

Black Acara

Much of southern FL

Established

Cichlasoma octofasciata

Jack Dempsey

Alachua, Brevard, Broward, Hillsborough, Indian River, Levy, Manatee, & Palm Beach counties

Established (most counties)

Cichlasoma salvini

Yellowbelly Cichlid

Broward & Miami-Dade counties

Established

Cichlasoma trimaculatum

Threespot Cichlid

Hillsborough & Manatee counties

Failed (Hillsborough Co.)

Extirpated (Manatee Co.)

Cichlasoma urophthalmus

Mayan Cichlid

Much of southern Florida

Established

Geophagus sp.

Eartheater

Miami-Dade County

Failed

Hemichromis letourneuxi

African Jewelfish

Much of southern Florida

Established

Herichthys cyanoguttatum

Rio Grande Cichlid

Brevard, Hillsborough, Lee, Miami-Dade, Monroe, Pinellas, & Polk counties

Established

Heros severus

Banded Cichlid

Broward & Miami-Dade counties

Established

Melanochromis auratus

Golden Mbuna

Hillsborough County

Unknown

Oreochromis aureus

Blue Tilapia

Much of peninsular FL

Established

Oreochromis mossambicus

Mozambique Tilapia

Much of peninsular FL

Established

Oreochromis niloticus

Nile Tilapia

Alachua, Brevard, Gadsden, Hardee, Hendry, Highlands, Jackson, Osceola, Putnam, & Sarasota counties

Established (Alachua Co.)

Unknown (elsewhere)

Oreochromis sp.

Tilapia Species

Brevard County

Unknown

Oreochromis, Sarotherodon, Tilapia sp.

Tilapia

Glades County, elsewhere

Collected

Parachromis managuensis

Jaguar Guapote

Much of southern FL

Established

Pseudotropheus socolofi

Pindani

Miami-Dade County

Extirpated

Pterophyllum scalare

Freshwater Angelfish

Palm Beach County

Failed

Sarotherodon melanotheron

Blackchin Tilapia

Much of southern FL

Established

Telmatochromis bifrenatus

Lake Tanganyika Dwarf Cichlid

Oklawaha County

Failed

Thorichthys meeki

Firemouth Cichlid

Brevard, Broward, Hillsborough, Miami-Dade, Monroe, Miami-Dade, & Palm Beach counties

Established (Broward Co.)

Failed or extirpated (elsewhere)

Tilapia buttikoferi

Zebra Tilapia

Miami-Dade County

Established

Tilapia mariae

Spotted Tilapia

Much of southern FL

Established

Tilapia sp.

Unidentified Tilapia

Brevard County

Established

Tilapia sparrmanii

Banded Tilapia

Hillsborough County, elsewhere

Failed

Tilapia zillii

Redbelly Tilapia

Brevard, Lake, Miami-Dade, & Polk counties

Established (Brevard & Miami-Dade Co.)

Extirpated or failed (elsewhere)

CLARIIDAE

LABYRINTH CATFISHES

 

 

Clarias batrachus

Walking Catfish

Much of southern FL

Established

COBITIDAE

LOACHES

 

 

Misgurnus anguillicaudatus

Oriental Weatherfish

Much of southern FL

Established

Pangio kuhlii

Coolie Loach

Hillsborough County

Failed

CYPRINIDAE

CARPS AND MINNOWS

 

 

Barbonymus schwanenfeldii

Tinfoil Barb

Palm Beach County, elsewhere

Failed

Carassius auratus

Goldfish

Alachua, Clay, Miami-Dade, & Putnam counties

Unknown

Ctenopharyngodon idella

Grass Carp

Throughout FL

Stocked as triploid, no evidence of establishment

Cyprinus carpio

Common Carp

Much of northern FL

Established

Danio rerio

Zebra Danio

Hillsborough & Palm Beach counties

Failed

Devario malabaricus

Malabar Danio

Hillsborough & Miami-Dade counties, elsewhere

Failed

Hybopsis cf. winchelli

Undescribed Clear Chub

Gadsden County

Failed

Hypophthalmichthys nobilis

 

Bighead Carp

Bay & Palm Beach counties

Failed

Labeo chrysophekadion

Black Sharkminnow, Black Labeo

Not specified

Failed

Leuciscus idus

Ide

Not specified

Failed

Luxilus chrysocephalus isolepis

Striped Shiner

Escambia & Santa Rosa counties

Established

Nocomis leptocephalus bellicus

Bluehead Chub

Escambia & Santa Rosa counties

Established

Notemigonus crysoleucas

Golden Shiner

Ochlocknee drainage

Established

Notropis baileyi

Rough Shiner

Escambia & Santa Rosa counties

Established

Notropis harperi

Redeye Chub

Leon County

Failed

Pethia conchonius

Rosy Barb

Palm Beach County, elsewhere

Failed

Pethia gelius

Dwarf Barb

Palm Beach County, elsewhere

Failed

Pimephales promelas

Fathead Minnow

Hillsborough, Leon, Marion, Palm Beach, & Polk counties

Unknown or extirpated throughout

Systomus tetrazona

Tiger Barb

Miami-Dade County, elsewhere

Failed

Tinca tinca

Tench

Unspecified

Failed

DORADIDAE

THORNY CATFISHES

 

 

Oxydoras niger

Ripsaw Catfish

Miami-Dade County

Failed

Platydoras costatus

Raphael Catfish

Unspecified

Collected

Pterodoras granulosus

Granulated Catfish

Pinellas County

Failed

Pterodoras sp.

Thorny Catfish

Pinellas County

Failed

Platax orbicularis

Orbiculate Batfish

Broward, Lee, Miami-Dade, Monroe, & Palm Beach counties

Eradicated to unknown

ERYTHRINIDAE

TRAHIRAS

 

 

Hoplias malabaricus

Trahira

Hillsborough County

Eradicated

GRAMMATIDAE

BASSLETS

 

 

Gramma loreto

Fairy Basslet

Atlantic Ocean off Broward, Monroe, Palm Beach, & Duval counties; also in Gulf of Mexico (unspecified counties)

Established (throughout)

HELOSTOMATIDAE

KISSING GOURAMIES

 

 

Helostoma temminkii

Kissing Gourami

Hillsborough & Palm Beach counties

Failed

HEMISCYLLIIDAE

BAMBOOSHARKS

 

 

Chiloscyllium punctatum

Brownbanded Bambooshark

Atlantic Ocean off Palm Beach County

Unknown, not likely to be established

HEPTAPTERIDAE

SEVEN-FINNED CATFISHES

 

 

Rhamdia quelen

Bagre

Miami-Dade County

Failed

Rhamdia sp.

Bagre De Rio

Miami-Dade County

Unknown

ICTALURIDAE

NORTH AMERICAN CATFISHES

 

 

Ictalurus furcatus

Blue Catfish

Calhoun, Escambia, Gilchrist, Okaloosa, & Washington counties, elsewhere in northern FL

Established (most of area)

Failed (Okaloosa Co.)

Unknown (Washington Co.)

Pylodictis olivaris

Flathead Catfish

Calhoun, Escambia, Liberty, Gulf, Holmes, Jackson, Walton, & Washington counties, elsewhere in northern FL

Established (several areas)

Failed or unknown elsewhere

LORICARIIDAE

SUCKERMOUTH ARMORED CATFISHES

 

 

Ancistrus sp.

Bristlenosed Catfish

Miami-Dade County

Established

Farlowella vittata

Twig Catfish

Hillsborough County

Unknown

Glyptoperichthys gibbiceps

Leopard Pleco

Alachua County

Unknown

Hypostomus plecostomus

Suckermouth Catfish

Broward, DeSota, Hillsborough, Miami-Dade, & Polk counties

Established (most of area)

Unknown (Hillsborough Co.)

Hypostomus sp.

Suckermouth Catfish

Hillsborough, Martin, Miami-Dade, Palm Beach, Pinellas, & Seminole counties, elsewhere

Established (throughout)

Pterygoplichthys anisitsi

Paraná Sailfin Catfish

Brevard, Marion, Okeechobee, & St. Johns counties

Established

Pterygoplichthys disjunctivus

Vermiculated Sailfin Catfish

Much of southern FL

Established

Pterygoplichthys multiradiatus

Orinoco Sailfin Catfish

Much of southern FL

Established

Pterygoplichthys pardalis

Amazon Sailfin Catfish

DeSota, Glades, Hardee, Hillsborough, Lee, Miami-Dade, Okeechobee, Palm Beach, Sarasota, & St. Lucie counties

Established

Pterygoplichthys sp.

Sailfin Catfish

Much of central and southern FL

Established (much of area)

MASTACEMBELIDAE

FRESHWATER SPINY EELS

 

 

Macrognathus siamensis

Spotfin Spiny Eel

Miami-Dade & Monroe counties

Established (throughout)

MORONIDAE

TEMPERATE BASSES

 

 

Morone chrysops

White Bass

Much of peninsular FL

Established

Morone chrysops x M. saxatilis

Sunshine Bass

Much of northern and central FL

Stocked

Morone saxatilis

Striped Bass

Gadsden, Hernando, Lake, Martin, Orange, Polk, & Walton counties

Established (Gadsden, Hernando, Polk, & Walton counties)

Failed, extirpated, or collected (elsewhere)

NOTOPTERIDAE

FEATHERFIN KNIFEFISHES

 

 

Chitala ornata

Clown Knifefish

Lake, Palm Beach, & Pinellas counties

Failed (Lake & Pinellas Co.)

Established (Palm Beach Co.)

OSPHRONEMIDAE

GOURAMIES

 

 

Betta splendens

Siamese Fighting Fish

Manatee & Palm Beach counties, elsewhere

Failed (throughout)

Colisa fasciata

Banded Gourami

Not specified

Failed

Colisa labiosa

Thicklipped Gourami

Hillsborough County

Failed

Colisa lalia

Dwarf Gourami

Hillsborough & Palm Beach counties

Failed

Macropodus opercularis

Paradise Fish

Palm Beach County

Failed

Osphronemus goramy

Giant Gourami

Not specified

Collected

Trichogaster leerii

Pearl Gourami

Palm Beach County

Failed

Trichogaster trichopterus

Three-Spot Gourami

Miami-Dade & Palm Beach counties

Failed

Trichopsis vittata

Croaking Gourami

Palm Beach County

Established

OSTEOGLOSSIDAE

AROWANAS

 

 

Osteoglossum bicirrhosum

Silver Arowana

Broward, Monroe, & Osceola counties

Failed

PANGASIIDAE

SHARK CATFISHES

 

 

Pangasianodon hypophthalmus

Iridescent Shark

Hillsborough County, elsewhere

Failed

PERCIDAE

PERCHES AND DARTERS

 

 

Perca flavescens

Yellow Perch

Gadsden & Liberty counties, Apalachicola drainage

Established

Sander canadensis

Sauger

Gadsden County

Established

Sander vitreus

Walleye

Orange County

Failed

PIMELODIDAE

LONG-WHISKERED CATFISHES

 

 

Leiarius marmoratus

(no common name)

Miami-Dade County

Unknown

Phractocephalus hemioliopterus

Redtail Catfish

Bay County, elsewhere

Failed

POECILIIDAE

LIVEBEARERS

 

 

Belonesox belizanus

Pike Killifish

Much of southern FL

Established (throughout)

Gambusia affinis

Western Mosquitofish

Alachua County

Failed

Poecilia kykesis

Péten Molly

Hillsborough & Palm Beach counties

Failed

Poecilia latipunctata

Tamesí Molly

Hillsborough County

Failed

Poecilia reticulata

Guppy

Alachua, Brevard, Hillsborough, & Palm Beach counties

Unknown (Alachua Co.)

Failed (Brevard Co.)

Extirpated (Hillsborough & Palm Beach Co.)

Poecilia sphenops

Mexican Molly

Not specified

Failed

Xiphophorus hellerii

Green Swordtail

Brevard, Hillsborough, Indian River, Manatee, Palm Beach, Polk, & St. Johns counties

Established (throughout)

Xiphophorus hellerii x X. maculatus

Red Swordtail

Brevard & Hillsborough counties

Established

Xiphophorus hellerii x X. variatus

Platyfish/Swordtail

Not specified

Locally established

Xiphophorus maculatus

Southern Platyfish

Alachua, Brevard, Hillsborough, Indian River, Manatee, Palm Beach, & St. Lucie counties

Established (throughout except Indian River & Manatee Co.)

Unknown (Indian River & Manatee Co.)

Xiphophorus sp.

Platyfish

Brevard & Hillsborough counties

Unknown (Brevard Co.)

Established (Hillsborough Co.)

Xiphophorus variatus

Variable Platyfish

Alachua, Brevard,  Hillsborough, Manatee, Marian, Miami-Dade, & Palm Beach counties

Established (throughout)

Xiphophorus xiphidium

Swordtail Platyfish

Not specified

Collected

POLYODONTIDAE

PADDLEFISHES

 

 

Polyodon spathula

Paddlefish

Jackson County & Apalachicola River

Failed

POLYPTERIDAE

BICHIRS

 

 

Polypterus delhezi

Barred Bichir

Broward County

Failed

POMACANTHIDAE

ANGELFISHES

 

 

Pomacanthus annularis

Blue Ringed Angelfish

Broward County

Unknown

Pomacanthus asfur

Arabian Angel

Broward County

Unknown

Pomacanthus imperator

Emperor Angelfish

Broward & Miami-Dade counties

Unknown

Pomacanthus maculosus

Yellowbar Angelfish

Broward & Palm Beach counties

Unknown

Pomacanthus semicirculatus

Semicircle Angelfish

Broward & Palm Beach counties

Unknown

Pomacanthus xanthometopon

Bluefaced Angel

Broward County

Unknown

POMACENTRIDAE

DAMSELFISHES

 

 

Dascyllus aruanus

Whitetail Damselfish

Palm Beach County

Eradicated

Dascyllus trimaculatus

Three Spot Damselfish

Palm Beach County

Unknown

Salmonidae

Salmon and Trout

 

 

Oncorhynchus mykiss

Rainbow Trout

Okaloosa & Walton counties

Stocked (1968)

Salmo trutta

Brown Trout

Not specified

Failed

SCATOPHAGIDAE

SCATS

 

 

Scatophagus argus

Scat

Levy & Martin counties

Collected

SCORPAENIDAE

SCORPIONFISHES

 

 

Pterois volitans &

P. miles (combined here due to morphological similarity)

Red Lionfish &

Devil Firefish

Throughout much of the Atlantic coast of Florida, nearshore to at least 60 miles offshore, less commonly encountered along the Gulf coast

Established (Atlantic coast)

Likely established (Gulf coast [see Schofeild 2010 for more info.])

Serranidae

Sea Basses

 

 

Cephalopholis argus

Peacock Hind

Broward, Monroe, & Palm Beach counties

Unknown

Chromileptes altivelis

Panther Grouper

Brevard, Broward, Palm Beach, & Pinellas counties

Unknown

Epinephelus ongus

White-Streaked Grouper

Palm Beach County

Unknown

SYNBRANCHIDAE

SWAMP EELS

 

 

Monopterus albus

Asian Swamp Eel

Hillsborough, Manatee, & Miami-Dade counties

Established (throughout)

TETRAODONTIDAE

PUFFERS

 

 

Arothron diadematus

Masked Pufferfish

Palm Beach County

Failed

ZANCLIDAE

MOORISH IDOLS

 

 

Zanclus cornutus

Moorish Idol

Monroe & Palm Beach counties

Unknown

Sources: Schofield (2010), USGS Nonindigenous Aquatic Species online database (http://nas.er.usgs.gov/queries/SpeciesList.aspx?group=Fishes&state=FL&Sortby=1)

Exhibit 3 of JCS Introduced Fishes Writeup 012815

Below is a link to an interactive map showing the spread of the Red Lionfish and the Devil Firefish in the western North Atlantic from the 1980s to 2013:

http://nas.er.usgs.gov/queries/FactSheets/LionfishAnimation.aspx

Sources:

Adams, C.R. and N.M. Steigerwalt.  2010.  Research Needs and Logistic Impediments in Restoration, Enhancement, and Management Projects: A Survey of Land Managers. Publication ENH1161 [online resource]. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL. Accessed 11/21/10 at: http://edis.ifas.ufl.edu/ep423.

Didham, R.H., J.M. Tylianakis, M.A. Hutchison, R.M. Ewers, and N.J. Gemmell. 2005. Are invasive species the drivers of ecological change? Trends in Ecology and Evolution 20(9):470–474.

Elton, C.S. 1958. The Ecology of Invasions by Animals and Plants. Methuen and Co., Ltd., Strand, London.

Idelberger, C.F., C.J. Stafford, and S.E. Erickson.  2011.  Distribution and abundance of introduced fishes in Florida’s Charlotte Harbor estuary.  Gulf and Caribbean Research 23:13–22.

Sala, O.E. F.S. Chapin, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker, and D.H. Wall. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–1774.

Schofield, P.J.  2010. Update on geographic spread of invasive lionfishes (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1928]) in the western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquatic Invasions 5, Supplement 1:S117–S122.  http://www.aquaticinvasions.net/2010/Supplement/AI_2010_5_S1_Schofield

U.S. Geological Survey.  2015. NAS – Nonindigenous Aquatic Species [online resource].  Accessed 01/23/15 at http://nas.er.usgs.gov/queries/CollectionInfo.aspx?SpeciesID=963&State=FL.

Villazon, K.A. 2009. Methods to Restore Native Plant Communities after Invasive Species Removal: Marl Prairie Ponds and an Abandoned Phosphate Mine in Florida. MS thesis, University of Florida, Gainesville, FL.

Vitousek, P.M., C.M. D’Antonio, L.L. Loope, and R. Westbrooks. 1996. Biological invasions as global environmental change. American Scientist 84:468–478.

Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of Earth’s ecosystem. Science 277:494–499.

Wilcove, D.S., D. Rothstein, J. Dubow, A. Phillips, and E. Losos.  1998.  Quantifying threats to imperiled species in the United States. Bioscience 48:607–615.

 

 

Continue reading
12050 Hits
0 Comments

Plastic Consumption in Burrow-Nesting Seabirds

 

Albatross with plastic FILEminimizer

Dimethyl Sulfide (DMS) the “Dinnerbell”

Research conducted at the University of California offers new evidence as to why burrow-nesting seabirds are driven to consume plastic. During these studies, scientists began to focus on DMS, a highly sulfuric infochemical formed during the enzymatic breakdown of dimethylsulfoniopropionate (DMSP) in marine phytoplankton. Scientists noted that in pelagic ecosystems, the amount of DMS increases while zooplankton are grazing on phytoplankton, which in turn triggers foraging responses throughout the marine food chain.

Marine Exposure on Plastic

Through a series of analyses, scientists tested the sulfur signature of the three most common types of plastic beads before and after marine exposure: high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP). Using solid-phase microextraction (SPME), gas chromatography (GC), and a sulfur chemiluminescence detector (SCD), scientists concluded that plastics that weren’t exposed to saltwater had no DMS (sulfuric) signature; however, a DMS signature was detected on every sample that had been exposed to saltwater for 1 month.

Plastic Ingestion in Seabirds

Scientists began to compare plastic ingestion in seabirds that are DMS-responsive and seabirds that are nonresponsive to DMS and noted that DMS-responsive seabirds have a significantly greater plastic ingestion rate than birds that are nonresponsive to DMS. Scientists also studied plastic ingestion rates in both burrow-nesting seabirds and surface-nesting seabirds and noted that burrow-nesting seabirds illustrated a significantly higher frequency of plastic ingestion. In turn, the data combined suggest that burrow-nesting seabirds (such as the procellariform seabirds or the albatross) have a higher frequency of plastic ingestion because they are DMS-responsive.

More information concerning this study can be found in Science Advances Magazine at http://advances.sciencemag.org/content/2/11/e1600395.full

Continue reading
487 Hits
0 Comments

Florida Fish and Wildlife Conservation Commission (FWC) Partner with Fishbrain APP Users to Track Florida Nonnative Freshwater Fish

 

In an effort to utilize the age of technology, FWC has partnered with the U.S. Florida Fish Wildlife Services and Fishbrain app with hopes to invite the 250,000 anglers currently using the app in Florida to help monitor 15 types of nonnative freshwater fish found in Florida waters.

The Fishbrain APP is a $5.99 IOS, Android friendly application designed to allow anglers from around the world to track their catches as well as to share useful intel with other users.

The use of a phone APP to collect scientific data among scientists and ordinary people is becoming increasingly popular and foolproof as inevitably technology only advances in automated recognition while our phones also have the capability to access and store other useful data such as GPS, date, time, tides and even the weather. Although the increase of such technological methods of collecting and storing data will likely benefit conservation, perhaps obsolete will be the old fashioned need to carry a clipboard and nostalgic will be the smell of sharpening a pencil, and gone will be the sloppy jittery jot of a scientist’s handwriting on actual paper.

 

Florida Fish and Wildlife news article can be found here:

http://myfwc.com/news/news-releases/2016/december/20/fishbrain/

Continue reading
661 Hits
0 Comments

2014 Mouth of the Columbia River Deep Water Site and Shallow Water Site Monitoring Series, Part 2 of 4: Grab Sampling

Part 2 of our Oregon adventure series describes the grab sampling effort that was part of the June and October surveys.  During the two surveys the team collected benthic samples at 40 locations in and around the drop zones of the DWS .  During the October survey, the team collected sediment samples from 45 locations for physical and chemical analysis.  We used a Gray O’Hara modified box corer to collect samples at water depths ranging from 178 to 279 feet.

The objectives of the study were to:

  • Provide a physical characterization of the benthic habitat
  • Assess levels of chemicals of concern
  • Characterize the benthic invertebrate community

 

Michelle pic 1

Deploying the grab sampler. The ropes helped keep the sampler from swinging and ensured that it reached the water surface safely. The sampler weighed 600 lbs.

 

 

Michelle pic 2

Emptying a sample into a decontaminated stainless steel pan.

 

 

michelle pic 3

An intact sample in the box core.

 

 

michelle pic 4

Washing the benthic sample through a 0.5-mm-mesh sieve box.

 

 

michelle pic 5

The remaining material (organisms plus coarse sediment) was decanted into a jar and fixed with 10% buffered formalin solution.  Sample organisms were later taxonomically determined at the lab.

 

 

michelle pic 6

Homogenizing a sediment sample prior to containerizing in glass sample jars.

 

 

michelle pic 7

An unlucky Dungeness crab caught in the box corer. 

 

 

michelle pic 8

The box corer stand also makes a nice throne.

 

Continue reading
1591 Hits
0 Comments

2014 Mouth of the Columbia River Deep Water Site and Shallow Water Site Monitoring Series Part 1 of 4: Dungeness Crab Sampling

Occasionally ANAMAR gets to participate in some pretty cool surveys. Our work along the Oregon coast in 2014 was definitely one of those projects that make our job seem like an adventure—a fun and exciting one complete with incredible scenery, a mixed bag of weather conditions, a great team of people, and whale sightings!

Management of dredged material and ODMDSs is a shared responsibility of EPA and USACE under the CWA and MPRSA. The overall objective of this monitoring program is to assess the extent and trends of environmental impacts from disposal of dredged sediments at the Mouth of the Columbia River Deep Water Site and Shallow Water Site (MCR DWS and SWS). In June and October 2014, scientists from ANAMAR and USACE Portland District, EPA Region 10, Marine Taxonomic Services, and the crew of the R/V Pacific Storm (owned by Oregon State University) conducted two surveys of the MCR DWS and SWS. The two surveys were designed to assess the status of the physical, chemical, and biological environment within previous, current, and future drop zones. The surveys were conducted using the R/V Pacific Storm, which allowed the team to stay on location for the duration of the two surveys. The June survey took 6 days to complete and the October survey took 4 days to complete.

This four-part blog series covers the different types of samples that were collected during the surveys and attempts to tell the story and capture the “cool” factor via photos. Part1 describes the Dungeness crab sampling effort that was part of the June survey. The team deployed and retrieved crab pots twice at 24 locations within the DWS and 12 locations within the SWS to assess the status of this commercially and recreationally important species. The data collected will help assess the crab population and abundance in these areas.

 

MCR1

MCR2

MCR3

MCR5

MCR6

 

We measured the carapace width and noted the sex of each crab.  We also inspected each crab and noted any that showed damage to the exoskeleton or signs of past infections.

MCR7

 

MCR4

MCR8

MCR9

 

 

 

Continue reading
1501 Hits
0 Comments

Minimizing Vessel Strikes with North Atlantic Right Whales

Minimizing Vessel Strikes with North Atlantic Right Whales

North Atlantic right whales (aka northern right whales) (Eubalaena glacialis) are a nearly extinct species whose population is steadily decreasing. Two of the primary threats endangering this species are collisions with ships and entanglement in fishing gear. With only an estimated 500 North Atlantic right whales remaining worldwide, it is vital that we minimize vessel strikes with this dwindling population. The link below is a guide to help boaters understand the seasonal locations where right whales are most vulnerable.

Click on the link below for NOAA’s ‘Compliance Guide for Right Whale Ship Strike Reduction Rule’ (50 CFR 224.105).

http://www.nmfs.noaa.gov/pr/pdfs/shipstrike/compliance_guide.pdf

 

Continue reading
Tags:
1884 Hits
0 Comments

Out of Their Element: What Makes Gulf Sturgeon So Jumpy?

Out of Their Element: What Makes Gulf Sturgeon So Jumpy?

The jumping of Gulf sturgeon (Acipenser oxyrinchus desotoi) on the Suwannee River is well publicized and is widely known among Floridians. Some jumping sturgeon have even caused injuries to unfortunate boaters who get in the way of these armored aerial acrobats. Sturgeon jump most often in the early morning, and each fish averages one jump per day. Jumping is not confined to large individuals either, as fish as small as 1 foot long will jump. Most jumping activity occurs from June to early July, when some reaches of the river can experience as many as 6 to 10 jumps per minute! The most intense jumping occurs when the water level is low, before the summer convective storm season sets in. Yes, the fact that these massive timeless fish jump is not the question here. They jump. We know. What’s not well publicized is why exactly these sturgeon feel the need to jump in the first place.

Gulf sturgeon are not trying to shed ectoparasites as many believe, nor are they trying to capture prey. The jumping is also unrelated to spawning. They are not reacting to the presence of boats.

They loiter in the deep dark pools of the Suwannee River and in other Gulf Slope rivers from April through September and slowly digest the 20 percent of body fat they put on during the previous 6 months of easy living, and easy feeding, in the Gulf of Mexico. When in the Suwannee they seldom feed, so put that fishing pole away.

Resting in the sluggish deep recesses of the Suwannee, Gulf sturgeon are conserving energy. But just hovering above the river bottom requires neutral buoyancy. Similar to how a SCUBA diver adjusts his BC, these fish must add air to the swim bladder. Air slowly leaks out of the swim bladder and is absorbed in the surrounding tissues. To keep from scraping along the bottom and to swim more efficiently in the sluggish current, the swim bladder must be refilled an average of once daily. Since the swim bladder in Gulf sturgeon is connected to the digestive tract by a duct, the bladder can be recharged by gulping air. But how do fishes, being totally aquatic as they are, find any atmospheric air to gulp? Well, we have nearly reached our answer as to why they jump.

Any SCUBA diver knows that you can’t descend easily through the water column with a BC full of air, even with dive weights. By the same principle, a sturgeon can’t just rise gently to the surface, take a big gulp of air, and glide back down into the depths. Did I mention that while sturgeon are lollygagging in the river, they are also chatting up a storm? Call them gabby or chatty, Gulf sturgeon really know how to bend an ear (or otolith, in this case). These fish communicate with one another via a series of snapping sounds. Jumping high up into the air and then falling powerfully back into the water, with a loud report, and swimming directly to the bottom, serves two purposes. The main purpose is to allow the fish to gulp air and yet have enough momentum to reach the river bottom immediately afterward (despite the increased buoyancy from the added air). The secondary purpose may be to communicate. Immediately prior to jumping, these fish emit a series of snapping sounds, and following the belly-flop-style smack when entering the water, the sturgeon emit more snapping sounds. The role jumping plays in sturgeon communication, if any, is far from clear and would be very difficult to prove scientifically. However, it seems probable that these fish are communicating with one another using not just snapping sounds (which have been recorded by U.S. Geological Survey scientists and heard by SCUBA divers), but perhaps also by the splash following a jump. So, the next time you encounter a jumping sturgeon while enjoying a lazy day on the Suwannee, ask it why it jumps. Listen carefully to its answer and don’t be surprised if its response sounds something like “snap, snap-snap, snaaap, snaaap, snap”.

Source and Suggested Reading:

Sulak, K. 2013. Catching air – those magnificent jumping Suwannee sturgeons. American Currents 38(2):23–25.

Continue reading
1876 Hits
0 Comments

A Brief History of the Gulf Sturgeon

A Brief History of the Gulf Sturgeon

 

sturgeon 1The Gulf Sturgeon (Acipenser oxyrinchus desotoi) are modern descendants of a group of ancient freshwater fish called Chondrostei which, along with alligators and crocodiles, were able to survive the mass extinction of the Mesozoic Era. Gulf Sturgeon have been known to swim into both fresh and saltwater to feed and uniquely possess a protruding suction mouth that makes it easy to obtain food from riverbeds, lakebeds, and the bottom of the Gulf of Mexico. Gulf Sturgeon have an average lifespan of 20 to 25 years and grow to a maximum length of 7½ feet, with an average body weight of 150 to 200 lbs., but have been known to reach weights of up to 300 lbs. Gulf Surgeon males become sexually mature at about age 8 and spawn every year after that, while the females become sexually mature at age 12 and spawn only three to four times during their lifespan. Females require 3 years to develop each batch of 200,000 to 500,000 eggs, of which only few will actually survive. Disease, water quality, predators, and a number of other factors claim 99.999% of eggs, hatchlings, and juveniles. USGS calculates that females need to successfully produce only two offspring to maintain a stable population.

In 1991 the federal government granted protection to the Gulf Sturgeon under the Endangered Species Act after a massive population decline occurred due in part to over fishing, damming of rivers, and pollution. Thanks to the many agencies, organizations, and private citizens that have continued to work together to help maintain accurate scientific research and field data, this species that links back 200 million years can still be found among today’s aquatic fauna.

 

A word from the field from ANAMAR’s Christine Smith:sturgeon 2

“Here are some photos from today’s USGS sturgeon-tagging effort.  We caught about 15 fish on the Suwannee near Manatee Springs.  Normally they catch more, but the DO [dissolved oxygen] was pretty low in the area.  We scanned for previous tags, weighed, measured fork and total length, tagged, and took blood samples.  Prior to fishing we ran a few sidescan transects to try to identify individual sturgeon as well as habitat.”

–Christine Smith on July 30, 2013

 

(Photos courtesy of Christine Smith)

 

Continue reading
2017 Hits
0 Comments

Amazing Sawfish of the Past: A brief review of the fossil record of these intriguing animals

Amazing Sawfish of the Past: A brief review of the fossil record of these intriguing animals

All sawfishes are highly modified and elongate rays that swim like a shark and have a long snout with laterally-placed spines. The snout (called a ‘rostrum’) is actually an extension of the skull (known as the ‘chondrocranium’) and the lateral spines are called ‘rostral teeth’ by scientists. Like the rest of the skeleton of the sawfish, the rostrum is composed of cartilage, albeit reinforced with extra calcium. The rostrum and rostral teeth are used in food gathering. The sawfish uses the rostrum to stun prey, such as fishes and invertebrates, which it then sucks into its mouth positioned under the head. There is no cutting or tearing and sawfish can only consume fish and invertebrates that fit into the mouth whole.

The modern sawfish group (family Pristidae) first showed up in the fossil record between the beginning of the Cenozoic (about 66 million years ago) and the beginning of the Eocene (about 56 million years ago). The only exception is the nominal genus Peyeria, which first appeared during the upper Cretaceous (about 100 million years ago). However, the fossil material attributed to the genus Peyeria may actually represent another type of ray—a member of the sharkfin guitarfish family (Rhinidae) such as the bowmouth guitarfish (Rhina ancylostoma).

Living (extant) sawfishes include the following species:

The Knifetooth complex (one species):

  1. Anoxypristis cuspidata (knifetooth sawfish [western Pacific and Indian oceans])

The Smalltooth complex (three species):

  1. Pristis clavata (dwarf sawfish [western Pacific Ocean])
  2. Pristis pectinata (smalltooth sawfish [eastern and western Atlantic Ocean])
  3. Pristis zijsron (green sawfish [western Pacific and Indian oceans])

The Largetooth complex of sawfish has recently been combined into one species:

  1. Pristis pristis (largetooth sawfish [eastern and western Atlantic, eastern and western Pacific, and Indian oceans])

There were also several additional members of the modern sawfish group that are only represented as fossils:

  1. Anoxypristis mucrodens (fossils of Europe, North America, West and East Africa)
  2. Peyeria libyca (nominal species; fossils of northeast Africa including Egypt)
  3. Propristis schweinfurthi (fossils of North and West Africa)
  4. Pristis spp. (at least eight extinct species described; fossils of West and East Africa, Europe, and North America)

Prior to the modern sawfishes, a diverse group of sawfishes (family Sclerorhynchidae) lived during the Cretaceous epoch. Members of the Cretaceous sawfishes had a diverse array of rostral tooth morphologies, ranging from closely-spaced thin spines to widely-spaced massive barbed teeth on sturdy, widened bases. Although most species reached a modest size of not more than 1 meter in total length, fossil rostra measuring well over 1 meter in length have been unearthed in Cretaceous sediments of Morocco.

There are at least 20 genera of Cretaceous sawfishes, including the following:

  1. Ankistrorhynchus (fossils of Europe and North America)
  2. Atlanticopristis (fossils of South America)
  3. Baharipristis (fossils of East Africa)
  4. Biropristis (fossils of South America)
  5. Borodinopristis (a nominal genus of about three species [fossils of North America])
  6. Ctenopristis (fossils of West and East Africa)
  7. Dalpiaza (fossils of West Africa)
  8. Ganopristis (fossils of Europe)
  9. Ischyrhiza (fossils of North and South America)
  10. Kiestus (fossils of North America)
  11. Libanopristis (fossils of Middle East)
  12. Marckgrafia (fossils of West Africa)
  13. Micropristis (fossils of Europe and Middle East)
  14. Onchopristis (fossils of North America, Europe, West and East Africa, Asia, New Zealand)
  15. Onchosaurus (fossils of North America and West Africa)
  16. Plicatopristis (fossils of the Middle East)
  17. Pucapristis (fossils of South America)
  18. Renpetia (fossils of the Middle East)
  19. Schizorhiza (fossils of North America and Middle East)
  20. Sclerorhynchus (fossils of North America and Middle East)

Modern sawfishes and Cretaceous sawfishes evolved independently from the guitarfishes (Rhinobatidae). Thus, while both groups are commonly referred to as sawfish, and both share similar morphological characteristics, they are not closely related. Sawfishes should not be confused with the saw sharks (family Pristiophoridae), which are true sharks and therefore only distantly related to the sawfishes (which are rays, not sharks).

The rostral teeth of Cretaceous sawfishes are attached to the dermis of the rostrum via connective tissue. Their rostral teeth are thought to be continually replaced throughout the life of the animal in the same conveyer-belt fashion as are the oral teeth of all sharks and rays. In contrast, modern sawfishes have rostral teeth firmly embedded in sockets (called ‘alveoli’) and their teeth are not replaced if lost. Cretaceous sawfish rostral teeth are covered with an enamel-like coating along the cusp; this coating is lacking in modern sawfishes. Cretaceous sawfishes also differ from modern sawfishes in that they possess a long, whip-like caudal fin. Although the average fossil remains consist of isolated rostral teeth or oral teeth, some beautiful, fully articulated fossil skeletons have been unearthed in Lebanon quarries.

Sources:

Alroy, J. and M. McClennen. 2013. Paleobiology Database [online resource]. Accessed 06/10/13 online at http://www.paleodb.org/?a=displaySearchColls&type=view.

Faria, V.V., M.T. McDavitt, P. Charvet, T.R. Wiley, C.A. Simpfendorfer, and G.J.P. Naylor. 2013. Species delineation and global population structure of critically endangered sawfishes (Pristidae). Zoological Journal of the Linnean Society 167(1):136–164.

Seitz, J.C. 2013. Fossil Sawfish [online resource]. Accessed 06/10/13 online at http://www.fossilsawfish.com/.

Wueringer, B.E., L. Squire Jr., and S.P. Collin. 2009. The biology of extinct and extant sawfish (Batoidea: Sclerorhynchidae and Pristidae). Reviews in Fish Biology and Fisheries 19:445–464.

Authored by Jason C. Seitz of ANAMAR

Continue reading
27615 Hits
0 Comments

How Many Species of Sawfish Are There in the World Today?

Jason sawfishSawfishes are large highly modified and elongate rays that swim like a shark and have a long snout with laterally-placed spines.  The snout (called a ‘rostrum’) is actually an extension of the skull (known as a ‘chondrocranium’) and the lateral spines are called ‘rostral teeth’ by scientists.  Like the rest of the skeleton of the sawfish, the rostrum is composed of cartilage, albeit reinforced with extra calcium.  The rostrum and rostral teeth are used in food gathering.  The sawfish uses the rostrum to stun fishes and to a lesser extent, invertebrates, which it then sucks into its mouth positioned under the head.  There is no cutting or tearing and sawfish can only consume fish and invertebrates that fit into the mouth whole.  The longest species of sawfish, the green sawfish (Pristis zijsron), is reported to reach a length of 23.9 feet according to Last and Stevens (1994).

Sawfishes can be distinguished from saw sharks (Pristiophurus spp. and Pliotrema warreni) by the lack of barbels, ventrally located gills (versus laterally located), dorso-laterally compressed body, and uniformly sized rostral teeth.  Sawfishes grow much larger than do saw sharks.  Further, sawfishes prefer warm coastal waters while saw sharks inhabit deeper cooler offshore waters.

Living sawfish species are globally distributed in tropical and sub-tropical coastal marine and estuarine waters, and sometimes inhabit rivers and associated freshwater bodies such as Lake Nicaragua.  The center of distribution is the western Pacific including northern Australia and Papua New Guinea. 

All modern sawfish species are considered imperiled and regarded by the International Union for the Conservation of Nature (IUCN) as ‘critically endangered’ with declining populations (www.iucnredlist.org).  Unfortunately, the IUCN is not a regulatory agency and thus no protection is afforded by this group.  Only two species currently have protection under the endangered species act of 1972, and only in waters of the United States.  The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) has protected all species of sawfish from international trade of sawfish parts since 2007 (www.cites.org).  However, the confusing taxonomy of modern sawfishes has hampered conservation efforts and such efforts are further disadvantaged by the poorly known geographical population structure.

Until very recently, there were six valid living species worldwide. The Knifetooth Complex of sawfish currently consists of one species:

Anoxypristis cuspidata (knifetooth sawfish [western Pacific and Indian oceans])

 The Smalltooth Complex of sawfish consists of three species:

Pristis clavata (dwarf sawfish [western Pacific Ocean])

Pristis pectinata (smalltooth sawfish [eastern and western Atlantic Ocean])

Pristis zijsron (green sawfish [western Pacific and Indian oceans])

 The Largetooth Complex of sawfish consisted of two species:

Pristis microdon (freshwater sawfish [western Pacific and Indian oceans])

Pristis perotteti (largetooth sawfish [eastern and western Atlantic Ocean, eastern Pacific Ocean])

Some researchers also considered the species Pristis pristis to be a valid member of the Largetooth Complex, although most considered it as an invalid synonym due to problems relating to its original description and lack of voucher specimens in museums (Faria 2007).  Also, the eastern Pacific population of the largetooth sawfish was considered to be a separate species (Pristis zephyreus) by some researchers following molecular phylogenetic work by Faria (2007), although no reliable morphological differences have been found between the eastern Pacific population and largetooth sawfish from the western Atlantic.

The freshwater sawfish and the largetooth sawfish have been problematic for researchers because the two species cannot be reliably differentiated by morphology and thus, these species were differentiated solely by region.  For specimens lacking collection data, this presents a challenge as the species may not be reliably determined at all.  Molecular work has shown that these species group closely together in terms of genetic background (Naylor et al. 2012).

Because of the fact that the largetooth sawfish and the freshwater sawfish are indistinguishable by morphology and share similar genetic backgrounds, it has been very recently proposed by researchers that these two species should be combined.  In a paper published in early 2013 and authored by Faria et al. (2013), all the Largetooth Complex species have been combined into a composite species under the resurrected name of Pristis pristis.  The resurrection of the formerly invalid name of Pristis pristis was based on Rule 23.1 (principle of priority) of the International Code of Zoological Nomenclature, which states that ‘the valid name of a taxon is the oldest available name applied to it’ (International Commission on Zoological Nomenclature 1999).  Since the species name Pristis pristis was published in 1758 (as Squalus pristis by Carl Linnaeus), it precedes the naming of all other Largetooth Complex species.  For this reason and because this name was used as a valid species after 1899, Pristis pristis is proposed by Faria et al. (2013) for use in place of Pristis microdon, Pristis perotteti, and the species of questionable validity, Pristis zephyreus.

Based on Faria et al. (2013), there are now a total of five valid sawfish species:

The Knifetooth complex (one species):

Anoxypristis cuspidata (knifetooth sawfish [western Pacific and Indian oceans])

The Smalltooth complex (three species):

Pristis clavata (dwarf sawfish [western Pacific Ocean])

Pristis pectinata (smalltooth sawfish [eastern and western Atlantic Ocean])

Pristis zijsron (green sawfish [western Pacific and Indian oceans])

The Largetooth complex of sawfish now consists of only one species:

Pristis pristis (largetooth sawfish [eastern and western Atlantic, eastern and western Pacific, and Indian oceans])

It is possible that in the future, changes may occur within the taxonomy of the knifetooth sawfish.  Gene flow between Indian Ocean and western Pacific specimens was found to be very low in a study by Faria et al. (2013).  Specimens from the Indian Ocean were found to have a higher average number of rostral teeth per side (average of 25.6) versus western Pacific specimens (average of 21.2) (faria et al. 2013).  Results of the Faria et al. (2013) study suggest that the knifetooth sawfish may actually represent multiple species.  In fact, a DNA-sequencing based analysis by Naylor et al. (2012) showed that knifetooth sawfish had considerable genetic differences from all other living members of the sawfish family.  This suggests that in the future the knifetooth sawfish may even be placed into a separate family distinct from the other sawfishes.

It is clear that there is still a lot to learn about sawfishes.  Although it is uncertain what changes will occur in sawfish taxonomy, or what new information will come to light from future scientific research, it remains clear that this interesting group of animals will continue to captivate scientists and layman alike for many years to come.

Sources Cited: Faria, V.V.  2007.  Taxonomic Review, Phylogeny, and Geographical Population Structure of the Sawfishes (Chondrichthyes, Pristiformes).  PhD dissertation, Iowa State University, Ames, IA.

Faria, V.V., M.T. McDavitt, P. Charvet, T.R. Wiley, C.A. Simpfendorfer, and G.J.P. Naylor.  2013. Species delineation and global population structure of critically endangered sawfishes (Pristidae).  Zoological Journal of the Linnean Society 167(1):136–164.

International Commission on Zoological Nomenclature.  1999.  International Code of Zoological Nomenclature. The International Trust for Zoological Nomenclature, The Natural History Museum, London, UK.

Last, P.R. and J.D. Stevens.  1994. Sharks and Rays of Australia.  CSIRO Division of Fisheries, Victoria, Australia.

Naylor, G.J.P., J.N. Caira, K. Jensen, K.A.M., Rosana, W.T. White, and P.R. Last.  2012. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History 2012(367):1–262.

Continue reading
15114 Hits
0 Comments

Puerto Rico Trench

Deepest Trench in the Atlantic Ocean

The Puerto Rico trench extends 497 miles and according to the NOAA is the deepest trench in the Atlantic Ocean reaching a depth of 5.2 miles. The trench is sloped into a SE direction alongside Hispaniola, Puerto Rico, the US Virgin Islands and Antigua and is formed with the merging of the North American Plate and the Caribbean plate. The Puerto Rico Trench is capable of producing earthquakes greater then a magnitude of 8.0 and is interestingly known for the most negative gravity anomaly found on earth. According to a 2007 survey USGS Puerto Rico and the US Virgin Islands now stand at a 33-55% chance of seismic activity occurring along the trench.

Continue reading
2444 Hits
0 Comments

©2006-2016 ANAMAR Environmental Consulting, Inc. | Web design & hosting provided by Blu Dove Designs

Gainesville, FL (352) 377-5770
Portland, OR (503) 220-1641
Fax: (352) 378-7620 • This email address is being protected from spambots. You need JavaScript enabled to view it.